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Old classification result.
Theorem (Svinolupov-VS 1982). A complete list (up to

”
almost invertible“ transformations) of equations of the form

ut = uxxx + f(u, ux, uxx) (1)

that have infinite hierarchies of local conservation laws can be
written as:

ut = uxxx + 6uux,

ut = uxxx + 6u2 ux,

ut = uxxx −
1

2
u3x + (αe2u + βe−2u)ux,

ut = uxxx −
1

2
Q′′ ux +

3

8

(Q− u2x)2x
ux (Q− u2x)

,

ut = uxxx −
3

2

u2xx +Q(u)

ux
,

where Q′′′′′(u) = 0.



Vector integrable equations.
Integrable vector evolution equations have the following

form:

ut = fn un + fn−1 un−1 + · · ·+ f1 u1 + f0 u, ui =
∂iu

∂xi
. (2)

Here u is N -component vector, the (scalar) coefficients fi
depend on scalar products between u,ux, ...,un.

We consider equations (2) that are integrable for arbitrary
dimension N . In virtue of the arbitrariness of N, all scalar
products

u[i,j] = (ui,uj), i 6 j

can be regarded as functionally independent variables.

We denote the ring of scalar-valued functions depending on
finite number of scalar products by F .



Examples. The following vector mKdV-systems:

ut = uxxx + (u,u)ux,

ut = uxxx + (u,u)ux + (u,ux)u

as well as a vector Harry Dym equation

ut = (u,u)3/2uxxx

are integrable for any N .

It is clear all such equations are invariant with respect to
the group SO(N).



Theorem (A.Meshkov, VS 2002).

i). If equation (2) possesses an infinite series of vector
commuting flows of the form

uτ = gm um + gm−1 um−1 + · · ·+ g1 u1 + g0 u, gi ∈ F , (3)

then there exists a formal Lax pair Lt = [A, L], where

L = a1Dx + a0 + a−1D
−1
x + · · · , A =

n∑
0

fiD
i
x. (4)

Here fi are the coefficients of equation (2) and ai ∈ F .

ii). The following functions

ρ−1 =
1

a1
, ρ0 =

a0
a1
, ρi = resLi, i ∈ N (5)

are conserved densities for equation (2).



The conservation laws with densities (5) are called
canonical.

iii). If equation (2) possesses an infinite series of conserved
densities, then there exist the formal Lax operator L and a
series S of the form

S = s1Dx + s0 + s−1D
−1
x + s−2D

−2 + · · · ,

such that

St +At S + S A = 0, St = −S, Lt = −S−1LS,

where the upper index t stands for a formal conjugation.

iv). Under the conditions of item iii) densities (5) with i = 2k
are of the form ρ2k = Dx(σk) for some functions σk.



Idea of the proof.

i). Rewrite equation (2) and its commuting flow (3) in the form

ut = A(u), uτ = B(u), where B =

m∑
0

giD
i
x. (6)

Compatibility of (6) leads to the operator identiry

Bt − [A, B] = Aτ .

For large m we may "ignore"the r.h.s. since it has a small order
comparing with the other terms. In other words, the operator B
satisfies Lt = [A, L] approximately. Then the series of first order
Lm = B1/m is an approximate solution as well. The gluing of
the first order approximate solutions corresponding to different
commuting flows into an exact formal Lax operator L is similar
to the scalar case.

ii). It follows from known Adler’s theorem.



Hamiltonian and recursion operators.
To define the canonical conserved densities we have

considered differential operators and series with scalar
coefficients from F . However it is not enough for Hamiltonian
and recursion operators and we should extend the ring of
coefficients.

Denote by Ri,j a F-linear operator that acts on vectors by
the rule

Ri,j(v) = ui (uj ,v).

It is easy to see that

Ri,jRp,q = (uj ,up)Ri,q, RTi,j = Rj,i, traceRi,j = (ui,uj),

Dx ◦Ri,j = Ri,jDx +Ri+1,j +Ri,j+1.

Denote by O the algebra over F , generated by operators Ri,j
and by the unity operator.



The Frechet derivatives of elements from F are differential
operators with coefficients from O. For instance, the Frechet
derivative of the r.h.s. F of an equation

ut = uxxx + f2uxx + f1ux + f0u (7)

equals

F∗ = D3
x +

∑
k

fkD
k
x +

∑
i,j,k

∂fk
∂u[i,j]

(
Rk,iD

j
x +Rk,j D

i
x

)
, (8)

where i, j, k = 0, . . . , 2. We will call such differential operators
local.

An example of local Hamiltonian operator is given by

H = u2[0,0]Dx + 2u[0,0] u[0,1] + 2u[0,0] (R0,1 −R1,0).



Let us describe all Hamiltonian operators of the form

H = ADx +Dx ◦A+ s4(R1,0 −R0,1)+

s5(R2,0 −R0,2) + s6(R2,1 −R1,2),

where
A = s0 + s1R0,0 + s2(R0,1 +R1,0) + s3R1,1,

and si ∈ F have second differential degree i.e. depend on
u[0,0], . . . , u[2,2] and s0 6= 0.

Proposition. This operator is Hamiltonian iff the coefficients
have the following form :

s1 = u2[0,1](s0 u[0,0] ψ)−2
(
u[0,1]

∂s0
∂u[0,1]

+ 2 s0

)2

− s0
u[0,0]

,

s2 = −u2[0,1](s0 ψ)−2 (u[0,0])
−1 ∂s0
∂u[0,1]

(
u[0,1]

∂s0
∂u[0,1]

+ 2 s0

)
,

s3 = u2[0,1](s0 ψ)−2
(

∂s0
∂u[0,1]

)2

, s5 = −s2, s6 = −s3,



s4 =
u2[0,1]

(s0 u[0,0] ψ)2

(
u[0,1]

∂s0
∂u[0,1]

+ 2 s0

)
×(

u[0,1]
∂s0
∂u[0,1]

− 4 s0 + 2u[0,0]
∂s0
∂u[0,0]

)
+

6u[0,1]
√
s0

ψ (u[0,0])3/2
− s0
u[0,0]

,

where

ψ = Dx

(
(u[0,0])

1/2

s
3/2
0

(
u[0,1]

∂s0
∂u[0,1]

+ 2 s0

))
.

Here s0(u[0,0], u[0,1]) is an arbitrary function. �

If s0 = s0(u[0,0]), then s2 = s3 = s5 = s6 = 0,

s1 = −
s0s
′
0(u[0,0]s

′
0 − 2 s0)

(u[0,0]s
′
0 − s0)2

, s4 = −
u[0,0]s0(s

′
0)

2

(u[0,0]s
′
0 − s0)2

.

In the case s0 = 1
2 we get H1 = Dx; if s0 = 1

2 u
2
[0,0], we obtain

the above example.



Possibly the most Hamiltonian structures for vector inte-
grable equations are non-local. For example, the Hamiltonian
operator H and the symplectic operator T for the vector
MKdV-equation

ut = uxxx + (u,u)ux

are given by

H(w) = Dxw + (u, D−1x ◦ u)w − (u, D−1x ◦w)u,

T (w) = Dxw + uD−1x ◦ (u, w).



Equations of KdV-type.
Integrable vector equations of the form

ut = uxxx + f2uxx + f1ux + f0u (9)

were studied by A.Meshkov and VS.
The coefficients fi of the equation are scalar functions in

the following six variables:

(u, u), (u,ux), (ux,ux), (u,uxx), (ux,uxx), (uxx,uxx). (10)

Several first canonical densities are given by

ρ0 = −1

3
f2, (11)

ρ1 =
1

9
f22 −

1

3
f1 +

1

3

d

dx
f2.

ρ2 =
1

3
θ0 −

1

3
f0 −

2

81
f32 +

1

9
f1 f2 −

d

dx
ρ1 −

1

3

d2

dx2
ρ0,

ρ3 =
1

3
θ1 −

d

dx
ρ2 −

1

3

d2

dx2
ρ1.



Formula (11) means that

−1

3
Dt(f2) = Dx(θ0)

for some θ ∈ F . Applying the Euler operator

δ

δu
=
∑
i6j

(−Dx)i uj

( ∂

∂u[i,j]

)
+ (−Dx)j ui

( ∂

∂u[i,j]

)
(12)

to the both sides of the conservation law, we get

0 =
δ

δu
Dtf2 = −6u6Dx

( ∂f2
∂u[2,2]

)
+ . . . ,

where the dots mean terms with ui, i < 6. Hence

f2 = c u[2,2] + · · ·

and so on.



If equation has infinitly many conservation laws then ρ0 is
trivial i.e. f2 is a total x-derivative. It is convenient to rewrite
such equation as

ut = uxxx −
3

2

d ln f

dx
uxx + f1ux + f0u, (13)

где ord f 6 1.

Proposition. For equation (13) that satisfies the second integ-
rability condition the coefficient f1 has the following form

f1 = c1
u[2,2]

f
+h1u

2
[1,2]+h2u

2
[0,2]+h3u[1,2]u[0,2]+h4u[1,2]+h5u[0,2]+h6.

Here ordhi 6 1, and c1 is a constant. �

It is possible to separate integrable equations into cases:

A. f = 1; B. f = f(u[0,0]); C. f = f(u[0,0], u[0,1]);

D. f = f(u[0,0], u[0,1], u[1,1]).



Shift-invariant equations.

For some special classes the classification is completed. In
paticular all equations of the case A are found.

Moreover, all equations of the form

ut = Dx (uxx + g1ux + g0u)

are listed. We present the classification result in the potencial
form

ut = uxxx + f2uxx + f1ux + f0u,

where fi depend on (ux,ux), (ux,uxx), (uxx,uxx) only. It
is clear that such equations are invariant w.r.t. translations
u→ u + c.



List 1:

ut = uxxx +
3

2

( a2 u[1,2]
2

1 + a u[1,1]
− a u[2,2]

)
ux,

ut = uxxx − 3
u[1,2]

u[1,1]
uxx +

3

2

u[2,2]

u[1,1]
ux,

ut = uxxx − 3
u[1,2]

u[1,1]
uxx +

3

2

(
u[2,2]

u[1,1]
+

u[1,2]
2

u[1,1]2(1 + a u[1,1])

)
ux,

ut = uxxx−
3

2
(p+1)

u[1,2]

p u[1,1]
uxx+

3

2
(p+1)

(
u[2,2]

u[1,1]
−
a u[1,2]

2

p2 u[1,1]

)
ux,

Here a is a constant and p =
√

1 + a u[1,1]. Notice that if a = 0

the latter equation is reduced to

ut = uxxx − 3
u[1,2]

u[1,1]
uxx + 3

u[2,2]

u[1,1]
ux,



Auto-Bäcklund transformations.

The auto-Bäcklund transformations of the first order is
defined by

ux = hvx + f u + g v, (14)

where u and v are solutions of the same vector equation. The
functions f, g and h are (scalar) functions in variables

u[0,0]=(u,u), v[i,j]
def
= (vi,vj), wi

def
= (u, vi), i, j > 0.

Example. The Bäcklund transformation for the vector
Swartz-KdV equation

ut = uxxx − 3
u[1,2]

u[1,1]
uxx +

3

2

u[2,2]

u[1,1]
ux

is given by

ux =
2µ

v2
x

(u− v, vx) (u− v)− µ

v2
x

(u− v)2 vx,

where µ is an arbitrary parameter.



The superposition formula

z = u + (µ− ν)
ν (u− v′)2 (u− v)− µ (u− v)2 (u− v′)(

µ (u− v)− ν (u− v′)
)2 ,

corresponding to this auto-Bäcklund transformation connects 4
different solutions

v′
µ−−−−→ z

ν

x xν
u −−−−→

µ
v

of the same equation. It defines a known integrable vector
discrete model.



Equations on the sphere.

The condition u2 = 1 reduces the number of independent
scalar product. Indeed, diffentiating u2 = 1, we obtain

(u, ux) = 0, (u, uxx) = −(ux, ux)

and so on. Moreover, the relation (u, ut) = 0 specifies f0. So we
consider equations

ut = uxxx + f2uxx + f1ux + ((ux, ux)f2 + 3(ux, uxx))u, (15)

where fi = fi((ux, ux), (ux, uxx), (uxx, uxx)).



List 2:

ut = uxxx − 3
u[1,2]

u[1,1]
uxx +

3

2

u[2,2]

u[1,1]
ux,

ut = uxxx − 3
u[1,2]

u[1,1]
uxx +

3

2

(
u[2,2]

u[1,1]
+

u2[1,2]

u2[1,1] (1 + a u[1,1])

)
ux,

ut = uxxx+
3

2

( a2 u2[1,2]

1 + a u[1,1]
−a (u[2,2]−u2[1,1])+u[1,1]

)
ux+3u[1,2] u,

ut = uxxx − 3
(p+ 1) u[1,2]

2 p u[1,1]
uxx + 3

(p− 1) u[1,2]

2 p
u

+
3

2

(
(p+ 1)u[2,2]

u[1,1]
−

(p+ 1) a u[1,2]
2

p2u[1,1]
+ u[1,1] (1− p)

)
ux.



Anisotropic equations.
Example. Consider equation (I.Golubchik-VS 2000):

ut =
(
uxx +

3

2
(ux, ux)u

)
x

+
3

2
〈u,u〉ux, u2 = 1. (16)

Here 〈a, b〉 = (a, R b), where R = diag(r1, ..., rN ) is arbitrary
constant matrix.

Equation (16) has a Lax representation Lt = [A,L],, where

L = Dx +

(
0 Λu

uTΛ, 0

)
.

Here
Λ =

1

λ
diag (

√
1− λ2r1, . . . ,

√
1− λ2rN ).

It was a first explicit example of a Lax operator with the
spectral parameter lying on the algebraic curve

λ21 + r1 = λ22 + r2 − · · · = λ2N + rN

of genus 1 + (N − 3)2N−2.



If N = 3, then (16) is a commuting flow of the Landau -
Lifshitz equation.

Becides, (16) defines a commuting flow for the Noemann
system

uxx = −
(

(ux, ux) + (u, Ru)
)
u +Ru, u2 = 1,

describing the dynamics of a particle on the sphere under the
quadratic potential U = 1

2(u, Ru). More precisely, if we
eliminate the derivatives uxx and uxxx from (16), then the
reduced system

ut =
1

2

(
(ux, ux) + (u, Ru)

)
ux − (ux, Ru)u +Rux

is a commuting flow for the Noemann system. �



In this example the coefficients of vector equation (2)
depend on two different independent scalar products (· , ·) and
〈· , ·〉. We call such equations anisotropic.

All anisotropic equations

ut = uxxx + f2uxx + f1ux + f0u,

on the sphere u[0,0] = 1 have been found. In this case the
coefficients fi depend on

u[1,1], u[1,2], u[2,2], v[0,0], v[0,1], v[1,1], v[0,2], v[1,2], v[2,2],

where
v[i,j] = (ui, R(uj)).



List 3:

All
”
rational“ equations of the list are:

ut = u3 +
(3

2
u[1,1] + v[0,0]

)
u1 + 3u[1,2] u0,

ut = u3 − 3
u[1,2]

u[1,1]
u2 +

3

2

(
u[2,2]

u[1,1]
+
u2[1,2]

u2[1,1]
+
v[1,1]

u[1,1]

)
u1,

ut = u3−3
u[1,2]

u[1,1]
u2+

3

2

(
u[2,2]

u[1,1]
+
u2[1,2]

u2[1,1]
−

(v[0,1] + u[1,2])
2

q u[1,1]
+
v[1,1]

u[1,1]

)
u1,

where q = u[1,1] + v[0,0] + a.



ut = u3−3
v[0,1]

v[0,0]
u2−3

(
v[0,2]

v[0,0]
− 2

v2[0,1]

v2[0,0]

)
u1+3

(
u[1,2] −

v[0,1]

v[0,0]
u[1,1]

)
u,

ut = u3 − 3
v[0,1]

v[0,0]
u2 − 3

(
2v[0,2] + v[1,1] + a

2v[0,0]
− 5

2

v2[0,1]

v2[0,0]

)
u1+

+3

(
u[1,2] −

v[0,1]

v[0,0]
u[1,1]

)
u,

ut = u3 − 3
v[0,1]

v[0,0]

(
u2 + u[1,1]u

)
+ 3u[1,2]u+

+
3

2

(
−
u[2,2]

v[0,0]
+

(u[1,2] + v[0,1])
2

v[0,0](v[0,0] + u[1,1])
+

+
(v[0,0] + u[1,1])

2

v[0,0]
+
v2[0,1] − v[0,0] v[1,1]

v2[0,0]

)
u1,



A hyperbolic integrable equation on the sphere is given by

uxy =
ux
〈u,u〉

(
〈u,uy〉+

√
1 + 〈u,u〉(ux,ux)−2 ϕ

)
− (ux,uy)u,

where ϕ =
√
〈u,uy〉2 + 〈u,u〉(1− 〈uy,uy〉).

In the case N = 2 this equation is equivalent to

uxy = sn(u)
√
u2x + 1

√
u2y + 1.


