Integrable vector evolution equations

Vladimir V. Sokolov
Landau Institute for Theoretical Physics

Based on joint papers with A. Meshkov
Dijon, 03.07.2013

References

1. V.V. Sokolov and A.B. Shabat, Classification of integrable evolution equations, Soviet Scientific Reviews, Section C, 4(1984), 221-280. Scalar case
2. V.V. Sokolov, T. Wolf , Classification of integrable polynomial vector evolution equations, J. Phys. A: Math. and General, 34(2001), 11139-11148.
3. A.G. Meshkov and V.V. Sokolov, Integrable evolution equations on the N-dimensional sphere, Commun. Math. Phys., 232(2002), 1-18.
4. M.Ju. Balakhnev, A.G. Meshkov, On a classification of integrable vectorial evolutionary equations, J. Nonlin. Math. Phys., 15(2008), 212-226.
5. A.G. Meshkov and V.V. Sokolov, Vector hyperbolic equations on quadrics possessing integrable third-order symmetries, submitted to Letters in Math. Phys., nlin. arXiv:1211.0681

Old classification result.

Theorem (Svinolupov-VS 1982). A complete list (up to "almost invertible" transformations) of equations of the form

$$
\begin{equation*}
u_{t}=u_{x x x}+f\left(u, u_{x}, u_{x x}\right) \tag{1}
\end{equation*}
$$

that have infinite hierarchies of local conservation laws can be written as:

$$
\begin{aligned}
u_{t} & =u_{x x x}+6 u u_{x} \\
u_{t} & =u_{x x x}+6 u^{2} u_{x} \\
u_{t} & =u_{x x x}-\frac{1}{2} u_{x}^{3}+\left(\alpha e^{2 u}+\beta e^{-2 u}\right) u_{x} \\
u_{t} & =u_{x x x}-\frac{1}{2} Q^{\prime \prime} u_{x}+\frac{3}{8} \frac{\left(Q-u_{x}^{2}\right)_{x}^{2}}{u_{x}\left(Q-u_{x}^{2}\right)} \\
u_{t} & =u_{x x x}-\frac{3}{2} \frac{u_{x x}^{2}+Q(u)}{u_{x}}
\end{aligned}
$$

where $Q^{\prime \prime \prime \prime \prime}(u)=0$.

Vector integrable equations.

Integrable vector evolution equations have the following form:

$$
\begin{equation*}
\mathbf{u}_{t}=f_{n} \mathbf{u}_{n}+f_{n-1} \mathbf{u}_{n-1}+\cdots+f_{1} \mathbf{u}_{1}+f_{0} \mathbf{u}, \quad \mathbf{u}_{i}=\frac{\partial^{i} \mathbf{u}}{\partial x^{i}} \tag{2}
\end{equation*}
$$

Here \mathbf{u} is N-component vector, the (scalar) coefficients f_{i} depend on scalar products between $\mathbf{u}, \mathbf{u}_{x}, \ldots, \mathbf{u}_{n}$.

We consider equations (2) that are integrable for arbitrary dimension N. In virtue of the arbitrariness of N, all scalar products

$$
u_{[i, j]}=\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right), \quad i \leqslant j
$$

can be regarded as functionally independent variables.
We denote the ring of scalar-valued functions depending on finite number of scalar products by \mathcal{F}.

Examples. The following vector mKdV-systems:

$$
\begin{gathered}
\mathbf{u}_{t}=\mathbf{u}_{x x x}+(\mathbf{u}, \mathbf{u}) \mathbf{u}_{x} \\
\mathbf{u}_{t}=\mathbf{u}_{x x x}+(\mathbf{u}, \mathbf{u}) \mathbf{u}_{x}+\left(\mathbf{u}, \mathbf{u}_{x}\right) \mathbf{u}
\end{gathered}
$$

as well as a vector Harry Dym equation

$$
\boldsymbol{u}_{t}=(\mathbf{u}, \mathbf{u})^{3 / 2} \boldsymbol{u}_{x x x}
$$

are integrable for any N.
It is clear all such equations are invariant with respect to the group $S O(N)$.

Theorem (A.Meshkov, VS 2002).

i). If equation (2) possesses an infinite series of vector commuting flows of the form

$$
\begin{equation*}
\mathbf{u}_{\tau}=g_{m} \mathbf{u}_{m}+g_{m-1} \mathbf{u}_{m-1}+\cdots+g_{1} \mathbf{u}_{1}+g_{0} \mathbf{u}, \quad g_{i} \in \mathcal{F} \tag{3}
\end{equation*}
$$

then there exists a formal Lax pair $L_{t}=[A, L]$, where

$$
\begin{equation*}
L=a_{1} D_{x}+a_{0}+a_{-1} D_{x}^{-1}+\cdots, \quad A=\sum_{0}^{n} f_{i} D_{x}^{i} \tag{4}
\end{equation*}
$$

Here f_{i} are the coefficients of equation (2) and $a_{i} \in \mathcal{F}$.
ii). The following functions

$$
\begin{equation*}
\rho_{-1}=\frac{1}{a_{1}}, \quad \rho_{0}=\frac{a_{0}}{a_{1}}, \quad \rho_{i}=\operatorname{res} L^{i}, \quad i \in \mathbb{N} \tag{5}
\end{equation*}
$$

are conserved densities for equation (2).

The conservation laws with densities (5) are called canonical.
iii). If equation (2) possesses an infinite series of conserved densities, then there exist the formal Lax operator L and a series S of the form

$$
S=s_{1} D_{x}+s_{0}+s_{-1} D_{x}^{-1}+s_{-2} D^{-2}+\cdots,
$$

such that

$$
S_{t}+A^{t} S+S A=0, \quad S^{t}=-S, \quad L^{t}=-S^{-1} L S
$$

where the upper index t stands for a formal conjugation. iv). Under the conditions of item iii) densities (5) with $i=2 k$ are of the form $\rho_{2 k}=D_{x}\left(\sigma_{k}\right)$ for some functions σ_{k}.

Idea of the proof.

i). Rewrite equation (2) and its commuting flow (3) in the form

$$
\begin{equation*}
\boldsymbol{u}_{t}=A(\boldsymbol{u}), \quad \boldsymbol{u}_{\tau}=B(\boldsymbol{u}), \quad \text { where } \quad B=\sum_{0}^{m} g_{i} D_{x}^{i} \tag{6}
\end{equation*}
$$

Compatibility of (6) leads to the operator identiry

$$
B_{t}-[A, B]=A_{\tau}
$$

For large m we may "ignore"the r.h.s. since it has a small order comparing with the other terms. In other words, the operator B satisfies $L_{t}=[A, L]$ approximately. Then the series of first order $L_{m}=B^{1 / m}$ is an approximate solution as well. The gluing of the first order approximate solutions corresponding to different commuting flows into an exact formal Lax operator L is similar to the scalar case.
ii). It follows from known Adler's theorem.

Hamiltonian and recursion operators.

To define the canonical conserved densities we have considered differential operators and series with scalar coefficients from \mathcal{F}. However it is not enough for Hamiltonian and recursion operators and we should extend the ring of coefficients.

Denote by $R_{i, j}$ a \mathcal{F}-linear operator that acts on vectors by the rule

$$
R_{i, j}(\boldsymbol{v})=\boldsymbol{u}_{i}\left(\boldsymbol{u}_{j}, \boldsymbol{v}\right)
$$

It is easy to see that

$$
\begin{gathered}
R_{i, j} R_{p, q}=\left(\boldsymbol{u}_{j}, \boldsymbol{u}_{p}\right) R_{i, q}, \quad R_{i, j}^{T}=R_{j, i}, \quad \operatorname{trace} R_{i, j}=\left(\boldsymbol{u}_{i}, \boldsymbol{u}_{j}\right), \\
D_{x} \circ R_{i, j}=R_{i, j} D_{x}+R_{i+1, j}+R_{i, j+1}
\end{gathered}
$$

Denote by \mathcal{O} the algebra over \mathcal{F}, generated by operators $R_{i, j}$ and by the unity operator.

The Frechet derivatives of elements from \mathcal{F} are differential operators with coefficients from \mathcal{O}. For instance, the Frechet derivative of the r.h.s. F of an equation

$$
\begin{equation*}
\mathbf{u}_{t}=\mathbf{u}_{x x x}+f_{2} \mathbf{u}_{x x}+f_{1} \mathbf{u}_{x}+f_{0} \mathbf{u} \tag{7}
\end{equation*}
$$

equals

$$
\begin{equation*}
F_{*}=D_{x}^{3}+\sum_{k} f_{k} D_{x}^{k}+\sum_{i, j, k} \frac{\partial f_{k}}{\partial u_{[i, j]}}\left(R_{k, i} D_{x}^{j}+R_{k, j} D_{x}^{i}\right), \tag{8}
\end{equation*}
$$

where $\quad i, j, k=0, \ldots, 2$. We will call such differential operators local.

An example of local Hamiltonian operator is given by

$$
\mathcal{H}=u_{[0,0]}^{2} D_{x}+2 u_{[0,0]} u_{[0,1]}+2 u_{[0,0]}\left(R_{0,1}-R_{1,0}\right)
$$

Let us describe all Hamiltonian operators of the form

$$
\begin{aligned}
\mathcal{H}= & A D_{x}+D_{x} \circ A+s_{4}\left(R_{1,0}-R_{0,1}\right)+ \\
& s_{5}\left(R_{2,0}-R_{0,2}\right)+s_{6}\left(R_{2,1}-R_{1,2}\right),
\end{aligned}
$$

where

$$
A=s_{0}+s_{1} R_{0,0}+s_{2}\left(R_{0,1}+R_{1,0}\right)+s_{3} R_{1,1},
$$

and $s_{i} \in \mathcal{F}$ have second differential degree i.e. depend on $u_{[0,0]}, \ldots, u_{[2,2]}$ and $s_{0} \neq 0$.
Proposition. This operator is Hamiltonian iff the coefficients have the following form :

$$
\begin{gathered}
s_{1}=u_{[0,1]}^{2}\left(s_{0} u_{[0,0]} \psi\right)^{-2}\left(u_{[0,1]} \frac{\partial s_{0}}{\partial u_{[0,1]}}+2 s_{0}\right)^{2}-\frac{s_{0}}{u_{[0,0]}}, \\
s_{2}=-u_{[0,1]}^{2}\left(s_{0} \psi\right)^{-2}\left(u_{[0,0]}\right)^{-1} \frac{\partial s_{0}}{\partial u_{[0,1]}}\left(u_{[0,1]} \frac{\partial s_{0}}{\partial u_{[0,1]}}+2 s_{0}\right), \\
s_{3}=u_{[0,1]}^{2}\left(s_{0} \psi\right)^{-2}\left(\frac{\partial s_{0}}{\partial u_{[0,1]}}\right)^{2}, \quad s_{5}=-s_{2}, \quad s_{6}=-s_{3},
\end{gathered}
$$

$$
\begin{gathered}
s_{4}=\frac{u_{[0,1]}^{2}}{\left(s_{0} u_{[0,0]} \psi\right)^{2}}\left(u_{[0,1]} \frac{\partial s_{0}}{\partial u_{[0,1]}}+2 s_{0}\right) \times \\
\left(u_{[0,1]} \frac{\partial s_{0}}{\partial u_{[0,1]}}-4 s_{0}+2 u_{[0,0]} \frac{\partial s_{0}}{\partial u_{[0,0]}}\right)+\frac{6 u_{[0,1]} \sqrt{s_{0}}}{\psi\left(u_{[0,0]}\right)^{3 / 2}}-\frac{s_{0}}{u_{[0,0]}},
\end{gathered}
$$

where

$$
\psi=D_{x}\left(\frac{\left(u_{[0,0]}\right)^{1 / 2}}{s_{0}^{3 / 2}}\left(u_{[0,1]} \frac{\partial s_{0}}{\partial u_{[0,1]}}+2 s_{0}\right)\right) .
$$

Here $s_{0}\left(u_{[0,0]}, u_{[0,1]}\right)$ is an arbitrary function.

$$
\begin{aligned}
& \text { If } s_{0}=s_{0}\left(u_{[0,0]}\right) \text {, then } s_{2}=s_{3}=s_{5}=s_{6}=0, \\
& s_{1}=-\frac{s_{0} s_{0}^{\prime}\left(u_{[0,0]} s_{0}^{\prime}-2 s_{0}\right)}{\left(u_{[0,0]} s_{0}^{\prime}-s_{0}\right)^{2}}, \quad s_{4}=-\frac{u_{[0,0]} s_{0}\left(s_{0}^{\prime}\right)^{2}}{\left(u_{[0,0]} s_{0}^{\prime}-s_{0}\right)^{2}} .
\end{aligned}
$$

In the case $s_{0}=\frac{1}{2}$ we get $\mathcal{H}_{1}=D_{x}$; if $s_{0}=\frac{1}{2} u_{[0,0]}^{2}$, we obtain the above example.

Possibly the most Hamiltonian structures for vector integrable equations are non-local. For example, the Hamiltonian operator \mathcal{H} and the symplectic operator \mathcal{T} for the vector MKdV-equation

$$
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}+(\boldsymbol{u}, \boldsymbol{u}) \boldsymbol{u}_{x}
$$

are given by

$$
\begin{gathered}
\mathcal{H}(\boldsymbol{w})=D_{x} \boldsymbol{w}+\left(\boldsymbol{u}, D_{x}^{-1} \circ \boldsymbol{u}\right) \boldsymbol{w}-\left(\boldsymbol{u}, D_{x}^{-1} \circ \boldsymbol{w}\right) \boldsymbol{u} \\
\mathcal{T}(\boldsymbol{w})=D_{x} \boldsymbol{w}+\boldsymbol{u} D_{x}^{-1} \circ(\boldsymbol{u}, \boldsymbol{w}) .
\end{gathered}
$$

Equations of KdV-type.

Integrable vector equations of the form

$$
\begin{equation*}
\mathbf{u}_{t}=\mathbf{u}_{x x x}+f_{2} \mathbf{u}_{x x}+f_{1} \mathbf{u}_{x}+f_{0} \mathbf{u} \tag{9}
\end{equation*}
$$

were studied by A.Meshkov and VS.
The coefficients f_{i} of the equation are scalar functions in the following six variables:

$$
\begin{equation*}
(\mathbf{u}, \mathbf{u}),\left(\mathbf{u}, \mathbf{u}_{x}\right),\left(\mathbf{u}_{x}, \mathbf{u}_{x}\right),\left(\mathbf{u}, \mathbf{u}_{x x}\right),\left(\mathbf{u}_{x}, \mathbf{u}_{x x}\right),\left(\mathbf{u}_{x x}, \mathbf{u}_{x x}\right) \tag{10}
\end{equation*}
$$

Several first canonical densities are given by

$$
\begin{gather*}
\rho_{0}=-\frac{1}{3} f_{2}, \tag{11}\\
\rho_{1}=\frac{1}{9} f_{2}^{2}-\frac{1}{3} f_{1}+\frac{1}{3} \frac{d}{d x} f_{2} . \\
\rho_{2}=\frac{1}{3} \theta_{0}-\frac{1}{3} f_{0}-\frac{2}{81} f_{2}^{3}+\frac{1}{9} f_{1} f_{2}-\frac{d}{d x} \rho_{1}-\frac{1}{3} \frac{d^{2}}{d x^{2}} \rho_{0}, \\
\rho_{3}=\frac{1}{3} \theta_{1}-\frac{d}{d x} \rho_{2}-\frac{1}{3} \frac{d^{2}}{d x^{2}} \rho_{1} .
\end{gather*}
$$

Formula (11) means that

$$
-\frac{1}{3} D_{t}\left(f_{2}\right)=D_{x}\left(\theta_{0}\right)
$$

for some $\theta \in \mathcal{F}$. Applying the Euler operator

$$
\begin{equation*}
\frac{\delta}{\delta \boldsymbol{u}}=\sum_{i \leqslant j}\left(-D_{x}\right)^{i} \boldsymbol{u}_{j}\left(\frac{\partial}{\partial u_{[i, j]}}\right)+\left(-D_{x}\right)^{j} \boldsymbol{u}_{i}\left(\frac{\partial}{\partial u_{[i, j]}}\right) \tag{12}
\end{equation*}
$$

to the both sides of the conservation law, we get

$$
0=\frac{\delta}{\delta \boldsymbol{u}} D_{t} f_{2}=-6 \boldsymbol{u}_{6} D_{x}\left(\frac{\partial f_{2}}{\partial u_{[2,2]}}\right)+\ldots,
$$

where the dots mean terms with $\boldsymbol{u}_{i}, i<6$. Hence

$$
f_{2}=c u_{[2,2]}+\cdots
$$

and so on.

If equation has infinitly many conservation laws then ρ_{0} is trivial i.e. f_{2} is a total x-derivative. It is convenient to rewrite such equation as

$$
\begin{equation*}
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}-\frac{3}{2} \frac{d \ln f}{d x} \boldsymbol{u}_{x x}+f_{1} \boldsymbol{u}_{x}+f_{0} \boldsymbol{u} \tag{13}
\end{equation*}
$$

где ord $f \leqslant 1$.
Proposition. For equation (13) that satisfies the second integrability condition the coefficient f_{1} has the following form
$f_{1}=c_{1} \frac{u_{[2,2]}}{f}+h_{1} u_{[1,2]}^{2}+h_{2} u_{[0,2]}^{2}+h_{3} u_{[1,2]} u_{[0,2]}+h_{4} u_{[1,2]}+h_{5} u_{[0,2]}+h_{6}$.
Here ord $h_{i} \leqslant 1$, and c_{1} is a constant.
It is possible to separate integrable equations into cases:

$$
\begin{array}{ll}
\text { A. } f=1 ; & \text { B. } f=f\left(u_{[0,0]}\right) ; \quad \text { C. } f=f\left(u_{[0,0]}, u_{[0,1]}\right) ;
\end{array}
$$

D. $f=f\left(u_{[0,0]}, u_{[0,1]}, u_{[1,1]}\right)$.

Shift-invariant equations.

For some special classes the classification is completed. In paticular all equations of the case \mathbf{A} are found.

Moreover, all equations of the form

$$
\boldsymbol{u}_{t}=D_{x}\left(\boldsymbol{u}_{x x}+g_{1} \boldsymbol{u}_{x}+g_{0} \boldsymbol{u}\right)
$$

are listed. We present the classification result in the potencial form

$$
\mathbf{u}_{t}=\mathbf{u}_{x x x}+f_{2} \mathbf{u}_{x x}+f_{1} \mathbf{u}_{x}+f_{0} \mathbf{u}
$$

where f_{i} depend on $\left(\mathbf{u}_{x}, \mathbf{u}_{x}\right),\left(\mathbf{u}_{x}, \mathbf{u}_{x x}\right),\left(\mathbf{u}_{x x}, \mathbf{u}_{x x}\right)$ only. It is clear that such equations are invariant w.r.t. translations $\boldsymbol{u} \rightarrow \boldsymbol{u}+\boldsymbol{c}$.

List 1:

$$
\begin{gathered}
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}+\frac{3}{2}\left(\frac{a^{2} u_{[1,2]}^{2}}{1+a u_{[1,1]}}-a u_{[2,2]}\right) \boldsymbol{u}_{x}, \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}-3 \frac{u_{[1,2]}}{u_{[1,1]}} \boldsymbol{u}_{x x}+\frac{3}{2} \frac{u_{[2,2]}}{u_{[1,1]}} \boldsymbol{u}_{x}, \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}-3 \frac{u_{[1,2]}}{u_{[1,1]}} \boldsymbol{u}_{x x}+\frac{3}{2}\left(\frac{u_{[2,2]}}{u_{[1,1]}}+\frac{u_{[1,2]}^{2}}{u_{[1,1]}^{2}\left(1+a u_{[1,1]}\right)}\right) \boldsymbol{u}_{x}, \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}-\frac{3}{2}(p+1) \frac{u_{[1,2]}}{p u_{[1,1]}} \boldsymbol{u}_{x x}+\frac{3}{2}(p+1)\left(\frac{u_{[2,2]}}{u_{[1,1]}}-\frac{a u_{[1,2]}^{2}}{p^{2} u_{[1,1]}}\right) \boldsymbol{u}_{x},
\end{gathered}
$$

Here a is a constant and $p=\sqrt{1+a u_{[1,1]}}$. Notice that if $a=0$ the latter equation is reduced to

$$
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}-3 \frac{u_{[1,2]}}{u_{[1,1]}} \boldsymbol{u}_{x x}+3 \frac{u_{[2,2]}}{u_{[1,1]}} \boldsymbol{u}_{x}
$$

Auto-Bäcklund transformations.

The auto-Bäcklund transformations of the first order is defined by

$$
\begin{equation*}
\boldsymbol{u}_{x}=h \boldsymbol{v}_{x}+f \boldsymbol{u}+g \boldsymbol{v} \tag{14}
\end{equation*}
$$

where \boldsymbol{u} and \boldsymbol{v} are solutions of the same vector equation. The functions f, g and h are (scalar) functions in variables
$u_{[0,0]}=(\boldsymbol{u}, \boldsymbol{u}), \quad v_{[i, j]} \stackrel{\text { def }}{=}\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right), \quad w_{i} \stackrel{\text { def }}{=}\left(\boldsymbol{u}, \boldsymbol{v}_{i}\right), \quad i, j \geqslant 0$.
Example. The Bäcklund transformation for the vector Swartz-KdV equation

$$
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}-3 \frac{u_{[1,2]}}{u_{[1,1]}} \boldsymbol{u}_{x x}+\frac{3}{2} \frac{u_{[2,2]}}{u_{[1,1]}} \boldsymbol{u}_{x}
$$

is given by

$$
\boldsymbol{u}_{x}=\frac{2 \mu}{\boldsymbol{v}_{x}^{2}}\left(\boldsymbol{u}-\boldsymbol{v}, \boldsymbol{v}_{x}\right)(\boldsymbol{u}-\boldsymbol{v})-\frac{\mu}{\boldsymbol{v}_{x}^{2}}(\boldsymbol{u}-\boldsymbol{v})^{2} \boldsymbol{v}_{x}
$$

where μ is an arbitrary parameter.

The superposition formula

$$
\boldsymbol{z}=\boldsymbol{u}+(\mu-\nu) \frac{\nu\left(\boldsymbol{u}-\boldsymbol{v}^{\prime}\right)^{2}(\boldsymbol{u}-\boldsymbol{v})-\mu(\boldsymbol{u}-\boldsymbol{v})^{2}\left(\boldsymbol{u}-\boldsymbol{v}^{\prime}\right)}{\left(\mu(\boldsymbol{u}-\boldsymbol{v})-\nu\left(\boldsymbol{u}-\boldsymbol{v}^{\prime}\right)\right)^{2}}
$$

corresponding to this auto-Bäcklund transformation connects 4 different solutions

$$
\begin{array}{cc}
\boldsymbol{v}^{\prime} \xrightarrow{\mu} & \boldsymbol{z} \\
\nu \uparrow \\
& \uparrow \stackrel{\mu}{\mu} \\
\boldsymbol{u} \xrightarrow{ } & \boldsymbol{v}
\end{array}
$$

of the same equation. It defines a known integrable vector discrete model.

Equations on the sphere.

The condition $\boldsymbol{u}^{2}=1$ reduces the number of independent scalar product. Indeed, diffentiating $\boldsymbol{u}^{2}=1$, we obtain

$$
\left(\boldsymbol{u}, \boldsymbol{u}_{x}\right)=0, \quad\left(\boldsymbol{u}, \boldsymbol{u}_{x x}\right)=-\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right)
$$

and so on. Moreover, the relation $\left(\boldsymbol{u}, \boldsymbol{u}_{t}\right)=0$ specifies f_{0}. So we consider equations

$$
\begin{equation*}
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}+f_{2} \boldsymbol{u}_{x x}+f_{1} \boldsymbol{u}_{x}+\left(\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right) f_{2}+3\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x x}\right)\right) \boldsymbol{u} \tag{15}
\end{equation*}
$$

where

$$
f_{i}=f_{i}\left(\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right),\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x x}\right),\left(\boldsymbol{u}_{x x}, \boldsymbol{u}_{x x}\right)\right)
$$

List 2:

$$
\begin{gathered}
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}-3 \frac{u_{[1,2]}}{u_{[1,1]}} \boldsymbol{u}_{x x}+\frac{3}{2} \frac{u_{[2,2]}}{u_{[1,1]}} \boldsymbol{u}_{x} \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}-3 \frac{u_{[1,2]}}{u_{[1,1]}} \boldsymbol{u}_{x x}+\frac{3}{2}\left(\frac{u_{[2,2]}}{u_{[1,1]}}+\frac{u_{[1,2]}^{2}}{u_{[1,1]}^{2}\left(1+a u_{[1,1]}\right)}\right) \boldsymbol{u}_{x}, \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}+\frac{3}{2}\left(\frac{a^{2} u_{[1,2]}^{2}}{1+a u_{[1,1]}}-a\left(u_{[2,2]}-u_{[1,1]}^{2}\right)+u_{[1,1]}\right) \boldsymbol{u}_{x}+3 u_{[1,2]} \boldsymbol{u}, \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{x x x}-3 \frac{(p+1) u_{[1,2]}}{2 p u_{[1,1]}} \boldsymbol{u}_{x x}+3 \frac{(p-1) u_{[1,2]}}{2 p} \boldsymbol{u} \\
+\frac{3}{2}\left(\frac{(p+1) u_{[2,2]}}{u_{[1,1]}}-\frac{(p+1) a u_{[1,2]}^{2}}{p^{2} u_{[1,1]}}+u_{[1,1]}(1-p)\right) \boldsymbol{u}_{x} .
\end{gathered}
$$

Anisotropic equations.

Example. Consider equation (I.Golubchik-VS 2000):

$$
\begin{equation*}
\boldsymbol{u}_{t}=\left(\boldsymbol{u}_{x x}+\frac{3}{2}\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right) \boldsymbol{u}\right)_{x}+\frac{3}{2}\langle\boldsymbol{u}, \boldsymbol{u}\rangle \boldsymbol{u}_{x}, \quad \boldsymbol{u}^{2}=1 \tag{16}
\end{equation*}
$$

Here $\langle\boldsymbol{a}, \boldsymbol{b}\rangle=(\boldsymbol{a}, R \boldsymbol{b})$, where $R=\operatorname{diag}\left(r_{1}, \ldots, r_{N}\right)$ is arbitrary constant matrix.

Equation (16) has a Lax representation $L_{t}=[A, L]$, where

$$
L=D_{x}+\left(\begin{array}{cc}
0 & \Lambda \mathbf{u} \\
\mathbf{u}^{T} \Lambda, & 0
\end{array}\right)
$$

Here

$$
\Lambda=\frac{1}{\lambda} \operatorname{diag}\left(\sqrt{1-\lambda^{2} r_{1}}, \ldots, \sqrt{1-\lambda^{2} r_{N}}\right)
$$

It was a first explicit example of a Lax operator with the spectral parameter lying on the algebraic curve

$$
\lambda_{1}^{2}+r_{1}=\lambda_{2}^{2}+r_{2}-\cdots=\lambda_{N}^{2}+r_{N}
$$

of genus $1+(N-3) 2^{N-2}$.

If $N=3$, then (16) is a commuting flow of the Landau Lifshitz equation.

Becides, (16) defines a commuting flow for the Noemann system

$$
\boldsymbol{u}_{x x}=-\left(\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right)+(\boldsymbol{u}, R \boldsymbol{u})\right) \boldsymbol{u}+R \boldsymbol{u}, \quad \boldsymbol{u}^{2}=1
$$

describing the dynamics of a particle on the sphere under the quadratic potential $\mathcal{U}=\frac{1}{2}(\boldsymbol{u}, R \boldsymbol{u})$. More precisely, if we eliminate the derivatives $\boldsymbol{u}_{x x}$ and $\boldsymbol{u}_{x x x}$ from (16), then the reduced system

$$
\boldsymbol{u}_{t}=\frac{1}{2}\left(\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right)+(\boldsymbol{u}, R \boldsymbol{u})\right) \boldsymbol{u}_{x}-\left(\boldsymbol{u}_{x}, R \boldsymbol{u}\right) \boldsymbol{u}+R \boldsymbol{u}_{x}
$$

is a commuting flow for the Noemann system.

In this example the coefficients of vector equation (2) depend on two different independent scalar products (\cdot, \cdot) and $\langle\cdot, \cdot\rangle$. We call such equations anisotropic.

All anisotropic equations

$$
\mathbf{u}_{t}=\mathbf{u}_{x x x}+f_{2} \mathbf{u}_{x x}+f_{1} \mathbf{u}_{x}+f_{0} \mathbf{u}
$$

on the sphere $u_{[0,0]}=1$ have been found. In this case the coefficients f_{i} depend on

$$
u_{[1,1]}, u_{[1,2]}, u_{[2,2]}, \quad v_{[0,0]}, v_{[0,1]}, v_{[1,1]}, v_{[0,2]}, v_{[1,2]}, v_{[2,2]}
$$

where

$$
v_{[i, j]}=\left(\boldsymbol{u}_{i}, R\left(\boldsymbol{u}_{j}\right)\right)
$$

List 3:

All „rational" equations of the list are:

$$
\begin{gathered}
\boldsymbol{u}_{t}=\boldsymbol{u}_{3}+\left(\frac{3}{2} u_{[1,1]}+v_{[0,0]}\right) \boldsymbol{u}_{1}+3 u_{[1,2]} \boldsymbol{u}_{0} \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{3}-3 \frac{u_{[1,2]}}{u_{[1,1]}} \boldsymbol{u}_{2}+\frac{3}{2}\left(\frac{u_{[2,2]}}{u_{[1,1]}}+\frac{u_{[1,2]}^{2}}{u_{[1,1]}^{2}}+\frac{v_{[1,1]}}{u_{[1,1]}}\right) \boldsymbol{u}_{1}, \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{3}-3 \frac{u_{[1,2]}}{u_{[1,1]}} \boldsymbol{u}_{2}+\frac{3}{2}\left(\frac{u_{[2,2]}}{u_{[1,1]}}+\frac{u_{[1,2]}^{2}}{u_{[1,1]}^{2}}-\frac{\left(v_{[0,1]}+u_{[1,2]}\right)^{2}}{q u_{[1,1]}}+\frac{v_{[1,1]}}{u_{[1,1]}}\right) \boldsymbol{u}_{1},
\end{gathered}
$$

where $q=u_{[1,1]}+v_{[0,0]}+a$.

$$
\begin{gathered}
\boldsymbol{u}_{t}=\boldsymbol{u}_{3}-3 \frac{v_{[0,1]}}{v_{[0,0]}} \boldsymbol{u}_{2}-3\left(\frac{v_{[0,2]}}{v_{[0,0]}}-2 \frac{v_{[0,1]}^{2}}{v_{[0,0]}^{2}}\right) \boldsymbol{u}_{1}+3\left(u_{[1,2]}-\frac{v_{[0,1]}}{v_{[0,0]}} u_{[1,1]}\right) \boldsymbol{u} \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{3}-3 \frac{v_{[0,1]}}{v_{[0,0]}} \boldsymbol{u}_{2}-3\left(\frac{2 v_{[0,2]}+v_{[1,1]}+a}{2 v_{[0,0]}}-\frac{5}{2} \frac{v_{[0,1]}^{2}}{v_{[0,0]}^{2}}\right) \boldsymbol{u}_{1}+ \\
+3\left(u_{[1,2]}-\frac{v_{[0,1]}}{v_{[0,0]}} u_{[1,1]}\right) \boldsymbol{u} \\
\boldsymbol{u}_{t}=\boldsymbol{u}_{3}-3 \frac{v_{[0,1]}}{v_{[0,0]}}\left(\boldsymbol{u}_{2}+u_{[1,1]} \boldsymbol{u}\right)+3 u_{[1,2]} \boldsymbol{u}+ \\
+\frac{3}{2}\left(-\frac{u_{[2,2]}}{v_{[0,0]}}+\frac{\left(u_{[1,2]}+v_{[0,1]}\right)^{2}}{v_{[0,0]}\left(v_{[0,0]}+u_{[1,1]}\right)}+\right. \\
\\
\left.+\frac{\left(v_{[0,0]}+u_{[1,1]}\right)^{2}}{v_{[0,0]}}+\frac{v_{[0,1]}^{2}-v_{[0,0]} v_{[1,1]}}{v_{[0,0]}^{2}}\right) \boldsymbol{u}_{1}
\end{gathered}
$$

A hyperbolic integrable equation on the sphere is given by

$$
\begin{gathered}
\boldsymbol{u}_{x y}=\frac{\boldsymbol{u}_{x}}{\langle\boldsymbol{u}, \boldsymbol{u}\rangle}\left(\left\langle\boldsymbol{u}, \boldsymbol{u}_{y}\right\rangle+\sqrt{1+\langle\boldsymbol{u}, \boldsymbol{u}\rangle\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{x}\right)^{-2}} \varphi\right)-\left(\boldsymbol{u}_{x}, \boldsymbol{u}_{y}\right) \boldsymbol{u} \\
\text { where } \quad \varphi=\sqrt{\left\langle\boldsymbol{u}, \boldsymbol{u}_{y}\right\rangle^{2}+\langle\boldsymbol{u}, \boldsymbol{u}\rangle\left(1-\left\langle\boldsymbol{u}_{y}, \boldsymbol{u}_{y}\right\rangle\right)}
\end{gathered}
$$

In the case $N=2$ this equation is equivalent to

$$
u_{x y}=\operatorname{sn}(u) \sqrt{u_{x}^{2}+1} \sqrt{u_{y}^{2}+1}
$$

