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Some 25 years ago

In 1986, Leningrad came to Paris: Semenov-Tian-Shansky gave a
series of lectures at the École Normale Supérieure.
They were eventually published as
“Classical r-matrices, Lax equations, Poisson Lie groups and
dressing transformations”, Lecture Notes in Phys., 280.

In 1991, Semenov-Tian-Shansky gave lectures at the CIMPA school
In memory of Jean-Louis Verdier
in Sophia-Antipolis, “Lectures on R-matrices, Poisson-Lie groups
and integrable systems”, Lectures on Integrable Systems, World
Scientific, 1994.

In1996, he gave lectures at the CIMPA school in Pondicherry
(India), “Quantum and classical integrable systems”, Integrability
of Nonlinear Systems, Lecture Notes in Phys., 495, 1997,
re-edited in 2004 as Lecture Notes in Phys., 638.
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Modified Yang–Baxter equation

In 1983, in “What is a classical r-matrix?”, STS introduced the
MYBE.
Let R : g→ g. Set

[u, v ]R = [Ru, v ] + [u,Rv ].

Set
BR(u, v) = [Ru,Rv ]− R[u, v ]R .

Then [u, v ]R satisfies the Jacobi identity iff BR satisfies
[u,BR(v ,w)] + [v ,BR(w , u)] + [w ,BR(u, v)] = 0.

A sufficient condition is that BR(u, v) be proportioanl to [u, v ],

[Ru,Rv ]− R([Ru, v ] + [u,Rv ]) + λ2[u, v ] = 0,

MYBE, with coefficient λ2.
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Recursion operators

Meanwhile the theory of bi-Hamiltonian systems was developped
(Magri, 1978, Gelfand and Dorfman, 1979–1982).

Recursion operators were introduced ;

Gelfand and Dorfman, 1979, Theorem 4.2: regular operators

Fokas-Fuchssteiner 1980, 1981: hereditary symmetries

Magri-Morosi 1984: Nijenhuis tensors
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Deformations of Lie brackets

Let N : g→ g. Set

[u, v ]N = [Nu, v ] + [u,Nv ]− N[u, v ].

Set
TN(u, v) = [Nu,Nv ]− N[u, v ]N

Then [u, v ]N satisfies the Jacobi identity iff TN satisfies
[u,TN(v ,w)] + [v ,TN(w , u)] + [w ,TN(u, v)] = 0.

A sufficient condition is that the torsion TN of N vanish,

[Nu,Nv ]− N([Nu, v ] + [u,Nv ]) + N2[u, v ] = 0.

The similarity with MYBE is striking, the two equations coincide
if N2 is proportional to the identity.
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Outline

We shall consider Nijenhuis operators, which are the recursion
operators of integrable Hamiltonian systems. and define Dirac
pairs in terms of Nijenhuis relations in generalized geometry.

- Generalized tangent bundles, Dirac structures.
- Relations in sets and in vector bundles.
- Torsion of a relation, Nijenhuis relations.

The aim is to prove that the notion of Dirac pairs unifies and
generalizes

Hamiltonian pairs (bi-Hamiltonian structures),
PΩ-structures,
a restricted class of ΩN-structures.

- Examples
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Generalizing the notion of Nijenhuis operator

There are many ways to generalize the notion of Nijenhuis
operator. I shall present only one such generalization : Nijenhuis
relations, that have to be considered when dealing with Dirac pairs.

Dirac pairs were defined by Irene Ya. Dorfman, in the context of
complexes over Lie algebras, following her work with Gelfand
[1979][1980].

• Irene Ya. Dorfman, “Dirac structures of integrable evolution
equations”, Phys. Lett. A, 125 (1987).

• —, Dirac Structures and Integrability of Nonlinear Evolution
Equations, 1993.
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Some references

• T. Courant, “Dirac manifolds”, Trans. Amer. Math. Soc. 319
(1990).

• yks and V. Rubtsov, “Compatible structures on Lie algebroids
and Monge-Ampère operators”, Acta. Appl. Math. 109 (2010).

• yks, “Dirac pairs”, J. Geom. Mech., 4 (2012).

• yks, “Nijenhuis structures on Courant algebroids”, Bull. Braz.
Math. Soc., 42 (2011).
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Relations

When U, V and W are sets, the composition, R′ ∗ R, of relations
R ⊂ U × V and R′ ⊂ V ×W is

R′ ∗ R = {(u,w) ∈ U ×W | ∃v ∈ V , (u, v) ∈ R and (v ,w) ∈ R′}.

The transpose of a relation R ⊂ U × V is the relation

R = {(v , u) ∈ V × U | (u, v) ∈ R}.

If φ : U → V and φ′ : V →W are maps, and if R = graphφ and
R′ = graphφ′, then

R′ ∗ R = graph(φ′ ◦ φ).

If φ : U → V is invertible,

graphφ = graph(φ−1).
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Relations in vector spaces and vector bundles

Let U and V be vector spaces. The dual of a relation R ⊂ U × V
is the relation R∗ ⊂ V ∗ × U∗ defined by

R∗ = {(β, α) ∈ V ∗ × U∗ | 〈α, u〉 = 〈β, v〉,∀(u, v) ∈ R}.

If R = graphφ, where φ is a linear map from U to V , then R∗ is
the graph of the dual map, φ∗.

Convention When U and V are vector bundles over a manifold M,
and R ⊂ U × V is a relation, we denote by the same letter the
relation on sections induced by R.
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Generalized tangent bundles

The generalized tangent bundle of a smooth manifold, M, is

TM = TM ⊕ T ∗M

equipped with
• the canonical fibrewise non-degenerate, symmetric, bilinear form

〈X + ξ,Y + η〉 = 〈X , η〉+ 〈Y , ξ〉,

• the Dorfman bracket

[X + ξ,Y + η] = [X ,Y ] + LXη − iY (dξ),

X , Y vector fields, sections of TM, ξ, η differential 1-forms,
sections of T ∗M.

The Dorfman bracket is a derived bracket, i[X ,η] = [[iX , d ], eη].
For derived brackets, see yks, Ann. Fourier 1996, LMP 2004.
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Properties of the Dorfman and Courant brackets

The Dorfman bracket is not skew-symmetric, it is a Loday
(Leibniz) bracket, i.e., it satisfies the Jacobi identity in the form

[u, [v ,w ]] = [[u, v ],w ] + [v , [u,w ]],

when u and v are sections of TM = TM ⊕ T ∗M.

The Courant bracket is the skew-symmetrized Dorfman bracket,

[X + ξ,Y + η] == [X ,Y ] + LXη − LY ξ +
1

2
〈X + ξ,Y + η〉.

The Courant bracket is skew-symmetric but it does not satisfy the
Jacobi identity.

The generalized tangent bundle of M, TM, is the double of TM.
It is a Courant algebroid.
More generally, the double of a Lie bialgebroid is a Courant algebroid.
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Lie algebroids

Definition: A Lie algebroid is a vector bundle τ : A→ M such that

• ΓA is a Lie algebra over R
skewsymmetry + Jacobi identity)

• there exists a morphism of vector bundles ρ : A→ TM, called
the anchor, such that the Leibniz identity is satisfied,

∀X ,Y ∈ ΓA,∀f ∈ C∞(M), [X , fY ] = f [X ,Y ] + (ρ(X ) · f )Y

Proposition The mapping ρ induces a Lie algebra homomorphism
ΓA→ Γ(TM).
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Examples

I Lie algebras

I TM

I foliations: integrable subbundles of TM

I cotangent bundle of a Poisson manifold, (M, π)
there exists a unique Lie algebroid structure [ , ]π on T ∗M
such that
the anchor is the map π] : T ∗M → TM defined by π, and

[df , dg ]π = d{f , g}, ∀f , g ∈ C∞(M).

I gauge Lie algebroids (also called Atiyah algebroids): TP/G ,
where P is a principal bundle with structure group G .

I action Lie algebroids : g×M, where g is a Lie algebra acting
on M.
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The Schouten–Nijenhuis bracket

If A is a Lie algebroid there is an odd Poisson (Gerstenhaber)
bracket on Γ(∧•A) that generalizes the Schouten–Nijenhuis bracket
of multivector fields.
It is a bracket denoted by [ , ]SN or just [ , ], of degree −1 on the
space of sections of Γ(∧•A), the unique extension to Γ(∧•A) as a
(graded) bi-derivation of the Lie bracket of vector fields satisfying
[X , f ] = X · f , for all X ∈ Γ(A), f ∈ C∞(M).
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Lie bialgebroids

A Lie bialgebroid is defined by a pair of Lie algebroids in duality
with a compatibility condition.
Lie bialgebroids generalize the Lie bialgebras.

Standard example:
(TM,T ∗M) where M is a Poisson manifold and T ∗M is equipped
with the Lie bracket of 1-forms

If (A,A∗) is a Lie bialgebroid, there is a Dorfman bracket on
A⊕ A∗.

The generalized tangent bundle is the particular case where T ∗M
has a vanishing Lie bracket.
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Dirac structures

A sub-bundle L ∈ TM ⊕T ∗M is a Dirac structure if it is maximally
isotropic and closed under the Dorfman bracket.

• If π : T ∗M → TM, π is a Poisson structure iff its graph is a
Dirac structure in TM ⊕ T ∗M

• If ω : TM → T ∗M, ω is a presymplectic structure (dω = 0) iff
its graph is a Dirac structure in TM ⊕ T ∗M.

Same definition in A⊕ A∗.
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Torsion of a relation

Let N be a relation in E × E , where (E , [ , ]) is a Loday algebra.
Consider the real-valued function defined on a subset of
E × E × E × E × E ∗ × E ∗ × E ∗ by

T(N)(u1, v1, u2, v2, α, α
′, α′′)

= 〈α, [v1, v2]〉 − 〈α′, [v1, u2] + [u1, v2]〉+ 〈α′′, [u1, u2]〉,
for all u1, v1, u2, v2 ∈ E , α, α′, α′′ ∈ E ∗ such that
(u1, v1) ∈ N, (u2, v2) ∈ N, (α, α′) ∈ N∗, (α′, α′′) ∈ N∗.

The function T(N) is called the torsion of the relation N.

Definition
A Nijenhuis relation in E × E is a subset N of E × E such that its
torsion, T(N), vanishes.
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Nijenhuis relations generalize Nijenhuis tensors

Proposition

Let (E , [ , ]) be a Loday algebra. A linear map, N : E → E , is a
Nijenhuis tensor if and only if graph N is a Nijenhuis relation in
E × E .
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Dirac pairs

Let A be a vector bundle, and let A∗ be the dual vector bundle.
For relations L ⊂ A× A∗ and L′ ⊂ A× A∗, we consider the relation
in A× A,

NL,L′ = L ∗ L′.

Assume that A is a Lie algebroid, and that E = A⊕A∗ is equipped
with the Dorfman bracket.

Definition
Dirac structures L and L′ on A are said to be a Dirac pair if NL,L′

is a Nijenhuis relation in A× A.
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Hamiltonian pairs

Let A be a Lie algebroid.
Lemma.
A bivector π is a Poisson structure on A if and only if, for all
ξ1, ξ2 ∈ Γ(A∗),

[πξ1, πξ2] = π[ξ1, ξ2]π,

where [ , ]π is the bracket of sections of A∗ defined by π,

[ξ1, ξ2]π = Lπξ1ξ2 − Lπξ2ξ1 + d(π(ξ1, ξ2)).

Definition
Poisson structures π and π′ on A are said to be compatible if
π + π′ is a Poisson structure. When Poisson structures π and π′

are compatible, (π, π′) is said to be a bi-Hamiltonian structure or a
Hamiltonian pair.

Fact: Poisson structures π and π′ constitute a Hamiltonian pair if
and only if [π, π′]= 0, where [ , ] is the Schouten–Nijenhuis
bracket.
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The relation defined by a pair of bivectors

For bivectors π and π′, set

N(π, π′) = graphπ ∗ graphπ′.

Theorem
Let π and π′be bivectors. The torsion of the relation N(π, π′)
satisfies the equation

2T(N(π, π′))(ξ1, ξ2, ξ, ξ
′, ξ′′)

〈ξ, [π, π](ξ1, ξ2)〉+ 〈ξ′′, [π′, π′](ξ1, ξ2)〉 − 2〈ξ′, [π, π′](ξ1, ξ2)〉.

for all ξ1, ξ2, ξ, ξ
′, ξ′′ ∈ Γ(A∗) such that πξ = π′ξ′ and πξ′ = π′ξ′′.

Proof Use [πξ1, πξ2] = π[ξ1, ξ2]π and the skew-symmetry of
π and π′. �
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Hamiltonian pairs and Poisson pairs

Corollary

If (π, π′) is a Hamiltonian pair, then N(π, π′) is a Nijenhuis
relation.

Let us call Poisson bivectors π and π′ on A such that N(π, π′) is a
Nijenhuis relation a Poisson pair. Then we can state:

Any Hamiltonian pair is a Poisson pair.

In order to state a converse, let us set
K = π−1(Imπ′) ∩ π′−1(Imπ) ⊂ A∗.

Corollary

(i) If (π, π′) is a Poisson pair, then iξ[π, π
′] = 0 for all ξ ∈ K .

(ii) If, in addition, K = A∗, then (π, π′) is a Hamiltonian pair.

In particular,
Any non-degenerate Poisson pair is a Hamiltonian pair.

(Non-degenerate means that both bivectors are non-degenerate.)
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Hierarchies of Poisson structures

The preceding results imply the well known proposition
[Fuchssteiner-Fokas, Dorfman, yks-Magri, etc.],

Proposition

(i) Assume that (π, π′) is a Hamiltonian pair, where π is
non-degenerate. Then N = π′π−1 is a Nijenhuis tensor.
(ii) Assume that π and π′ are non-degenerate Poisson structures
and that N = π′π−1 is a Nijenhuis tensor. Then (π, π′) is a
Hamiltonian pair. More generally, all (Nkπ,N`π) (k, ` ∈ N) are
Hamiltonian pairs.
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Poisson pairs and Dirac pairs

If L = graphπ and L′ = graphπ′, then

NL,L′ = graphπ ∗ graphπ′ = N(π, π′).

Theorem
(i) Bivectors π and π′ constitute a Poisson pair if and only if their
graphs constitute a Dirac pair.
(ii) If (π, π′) is a Hamiltonian pair, then (graphπ, graphπ′) is a
Dirac pair.
(iii) Conversely, if (graphπ, graphπ′) is a Dirac pair and if π and
π′ are non-degenerate bivectors, then (π, π′) is a Hamiltonian pair.
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Presymplectic pairs

Definition
If ω and ω′ are presymplectic structures whose graphs constitute a
Dirac pair, (ω, ω′) is called a presymplectic pair. If, in addition, ω
and ω′ are non-degenerate, (ω, ω′) is called a symplectic pair.

For L = graphω, L′ = graphω′,

NL,L′ = graphω ∗ graphω′.

Theorem
Symplectic pairs are in one-to-one correspondence with
non-degenerate Poisson pairs.

Conférence en l’honneur de Michael Semenov-Tian-Shansky Recursion operators in a generalized setting



Examples from the theory of Monge-Ampère operators

See Kushner–Lychagin–Rubtsov [2007] and
Lychagin–Rubtsov–Chekalov [1993]. See yks–Roubtsov [2010].

Let M = T ∗R2 and let Ω be the canonical symplectic form on M.
Here A = TM. In canonical coordinates (q1, q2, p1, p2) on M,
Ω = dq1 ∧ dp1 + dq2 ∧ dp2.
Examples of presymplectic pairs (Ω, ω) are defined by

ω = ωH = dq1 ∧ dp1 − dq2 ∧ dp2,

ω = ωE = dq1 ∧ dp2 − dq2 ∧ dp1,

ω = ωP = dq1 ∧ dp2.

The pair (Ω, ωE ) is a ‘conformal symplectic couple’ as defined by
Geiges (Duke [1996], 4-manifolds), i.e., it is a closed, effective
2-form (Ω ∧ ω = 0), with Pfaffian equal to 1 (ω ∧ ω = Ω ∧ Ω).
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PΩ-structures

Definition
A bivector π and a 2-form ω define a PΩ-structure on a Lie
algebroid A if π is a Poisson bivector, and both ω and ωN are
closed, where N = π ◦ ω and ωN = ω ◦ N.

Proposition

Let π be a Poisson bivector and let ω be a presymplectic form.
Then (graph π, graph ω) is a Dirac pair if and only if π ◦ ω is a
Nijenhuis tensor.

Proof If L = graph π and L′ = graph ω, then
NL,L′ = graph (π ◦ ω). �
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Dirac pairs and PΩ-structures

Theorem
(i) If a Poisson structure π and a presymplectic structure ω
constitute a PΩ-structure, their graphs constitute a Dirac pair.
(ii) Conversely, if the graphs of a Poisson structure π and a
presymplectic structure ω constitute a Dirac pair, and if π is
non-degenerate, then π and ω constitute a PΩ-structure.
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ΩN-structures

Let N be a (1, 1)-tensor and ω a 2-form on A such that
ω ◦ N = N∗ ◦ ω. Then ωN defined by ωN = ω ◦ N is a 2-form.

Definition
A 2-form ω and a (1, 1)-tensor N define an ΩN-structure on a Lie
algebroid A if ω ◦ N = N∗ ◦ ω, N is a Nijenhuis tensor, and both ω
and ωN are closed, where ωN = ω ◦ N.
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Examples

In the notation of the previous example, in coordinates on T ∗R2,
(q1, q2, p1, p2), let NH = Ω−1 ◦ ωH and NE = Ω−1 ◦ ωE , so that

NH =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 and NE =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 .

Then (Ω,NH) and (Ω,NE ) are ΩN-structures on T ∗R2, with
N2
H = Id and N2

E = −Id. Thus NE is a complex structure, and NH

is a product structure on T ∗(R2).

Let NP = Ω−1 ◦ ωP , so that NP =


0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 0

. Then (Ω,NP)

is an ΩN-structure with N2
P = 0, so that NP is a tangent structure.
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The non-degenerate case

Proposition

Let ω be a non-degenerate 2-form and N a (1, 1)-tensor such that
ωN = ω ◦ N is skew-symmetric. Then (ω,N) is an ΩN-structure if
and only if (graph ω, graph ωN) is a Dirac pair.

Proof When L = graph ω and L′ = graph ωN ,
NLL′ = {(x , y) ∈ A× A |ωNx = ωy}.

Therefore, when ω is invertible, NLL′ = graph N.

Example The pairs (graph Ω , graph ωH), (graph Ω , graph ωE )
and (graph Ω, graph ωP) are the Dirac pairs associated with the
ΩN-structures described in the previous example.
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Weak ΩN-structures

In the next theorem (yks [2011]), the 2-form ω is not assumed to
be non-degenerate. Cf. also Dorfman [1993].
Let ω be a 2-form and N a (1, 1)-tensor such that ωN = ω ◦ N is
skew-symmetric.
We shall call (ω,N) a weak ΩN-structure if ω and ωN are closed
2-forms, and the torsion of N takes values in the kernel of ω.

We set N = NLL′ = {(x , y) ∈ A× A |ωNx = ωy} and

N+ = {(ωx , ωNx) ∈ A∗ × A∗ | x ∈ A}.

The relation N+ is the restriction of the graph of N∗ to the image
of ω, and a subset of N∗.
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Dirac pairs and ΩN-structures

Theorem
(i) If (ω,N) is an ΩN-structure, and if N+ = N∗, then
(graph ω, graph ωN) is a Dirac pair.
(ii) Conversely, if (graph ω, graph ωN) is a Dirac pair, then (ω,N)
is a weak ΩN-structure.

Proof Evaluate dω, dωN and dωN2 on well chosen triples of vectors
[...]. �

More generally, all 2-forms ω ◦ N2, ω ◦ N3, . . . , ω ◦ Np, . . . are
closed. Whence a hierarchy of Dirac pairs.

This property is the basis of the construction of a sequence of
integrals in involution for bi-Hamiltonian systems, and for the
extension of this property to systems associated to a Dirac pair.
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Conclusion

• Generalized geometry appears more and more frequently in the
physics literature : supergravity in terms of “generalized
connections”: Gabella et al., “Type IIB supergravity and
generalized complex geometry” (2010), Daniel Waldram,
sigma-models, integrable systems. See in particular Barakat–
De Sole–Kac (2009).
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Bon anniversaire !

***
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